Pumped biochemical reactions, nonequilibrium circulation, and stochastic resonance.
نویسندگان
چکیده
Based on a master equation formalism for mesoscopic, unimolecular biochemical reactions, we show the periodic oscillation arising from severe nonequilibrium pumping is intimately related to the periodic motion in recently studied stochastic resonance (SR). The white noise in SR is naturally identified with the temperature in the biochemical reactions; the drift in the SR is associated with the circular flux in nonequilibrium steady state (NESS). As in SR, an optimal temperature for biochemical oscillation is shown to exist. A unifying framework for Hill's theory of NESS and the SR without periodic forcing is presented. The new formalism provides an analytically solvable model for SR.
منابع مشابه
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents...
متن کاملOpen-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.
Gibbsian equilibrium statistical thermodynamics is the theoretical foundation for isothermal, closed chemical, and biochemical reaction systems. This theory, however, is not applicable to most biochemical reactions in living cells, which exhibit a range of interesting phenomena such as free energy transduction, temporal and spatial complexity, and kinetic proofreading. In this article, a nonequ...
متن کاملThe Chemical Master Equation Approach to Nonequilibrium Steady-State of Open Biochemical Systems: Linear Single-Molecule Enzyme Kinetics and Nonlinear Biochemical Reaction Networks
We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme...
متن کاملThe Mathematical Theory of Molecular Motor Movement and Chemomechanical Energy Transduction
The mathematical formulation of the model for molecular movement of single motor proteins driven by cyclic biochemical reactions in an aqueous environment leads to a drifted Brownian motion characterized by coupled diffusion equations. In this article, we introduce the basic notion for the continuous model and review some asymptotic solutions for the problem. (For the lattice model see [17, 47]...
متن کاملStochastic theory of nonequilibrium steady states. Part II: Applications in chemical biophysics
The mathematical theory of nonequilibrium steady state (NESS) has a natural application in open biochemical systems which have sustained source(s) and sink(s) in terms of a difference in their chemical potentials. After a brief introduction in Section 1, in Part II of this review, we present the widely studied biochemical enzyme kinetics, the workhorse of biochemical dynamic modeling, in terms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 84 10 شماره
صفحات -
تاریخ انتشار 2000